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A USER'S GUIDE TO THE SASSYS-1 CONTROL SYSTEM MODELING CAPABILITY 

by 

R. B. Vilim 
Applied Physics Division 
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Argonne, Illinois 60439 

ABSTRACT 

This report describes a control system modeling capability 
that has been developed for the analysis of control schemes for 
advanced liquid metal reactors. The general class of control 
equations that can be represented using the modeling capability is 
identified, and the numerical algorithms used to solve these 
equations are described. The modeling capability has been 
implemented in the SASSYS-1 systems analysis code. A description 
of the card input, a sample input deck and some guidelines for 
running the code are given. 
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1. INTRODUCTION 

This report serves as a user's guide to a control system modeling 

capability that has been developed for the analysis of control schemes for 

advanced liquid metal reactors. The capability can be interfaced to any 

standard reactor systems code; here we describe it as interfaced to the 

SASSYS-1 reactor systems code. The class of control equations that can be 

solved is presented and the solution algorithms are described. A 

description of the card input, a sample input deck, and some general 

guidelines for running the code are given. For a brief description of power 

plant control systems, the reader is referred to Reference 1. For an 

illustration of how the modeling capability can be used for design and 

analysis of plant control systems, the reader is referred to Reference 2. 

The modeling capability is very flexible, allowing the user to select 

any number of plant variables for input to the control system as measured 

quantities. These signals can then be processed by a user-defined network 

of mathematical blocks that implement the control equations. The output 

from these blocks can then be used to drive various actuators already 

existing in SASSYS-1 or they can be used to directly control plant variables 

in SASSYS-1. The modeling capability has a steady state solution finder 

that can be used to determine initial values for demand signals and state 

variables that place the control system in a steady state that is consistent 

with the plant steady state as calculated by SASSYS-1. The control system 

modeling capability can also be used to calculate auxiliary variables and 

print their values. 

The control system model is an integral component of SASSYS-1 and is 

effected through the input deck in a manner similar to the other reactor 

component models. To use the model, one must first write the mathematical 

equations that describe the desired plant control system and identify the 

plant variables that are to be measured and controlled. The user then 

transforms the equations and variables into a block diagram where the 

individual component blocks are basic mathematical elements such as 

integrators and sutimers. The input deck is prepared directly from this 

block diagram with each block definition occupying an input card and each 



plant variable that links with the control system also occupying an input 

card. Several other cards must also be entered to specify how the control 

system initial conditions are to be calculated and to assign values to 

parameters that control the accuracy and stability of the transient 

solution. A set of parameters also exists for controlling the printing of 

debug data. This output is useful for diagnosing input errors. 

This report is organized as follows. Section II introduces the general 

class of control equation that can be represented. It is very probable that 

the user's model fits this form but this should be verified. The solution 

techniques used to solve the block diagram equations are described in 

Section III. Section IV presents some general guidelines for selecting 

values of solution control parameters and describes some of the modeling 

capability features and how they are used. The input description is given 

in Appendix A. 

II. GENERALIZED MODELING CAPABILITY 

The control system modeling capability was developed with the intent 

that a wide range of plant control systems could be simulated. For this 

purpose, two specific objectives were set. First, the modeling capability 

should be general enough to permit the user to assemble any set of control 

equations and specify how they interface to the plant solely through the 

input. And second, the modeling capability should employ a numerical method 

which is reliable in all foreseeable applications. Fulfilling these two 

goals led to the identification of a general equation form capable of 

representing all classes of plant control systems. 

A. General Equation Form 

The solution algorithms of the model are based on a general set of 

equations for the control system state variables and outputs. These 

equations are formulated under the assumption that the three components of a 

control system, the sensor, the controller, and the actuator, can all be 

modeled as ordinary differential equations. The general equation form is 

easy to deduce. 



Since the sensor and actuator behavior are governed by physical laws, 

and since they are normally modeled in lumped parameter form, they are both 

described by 

^ x ( t ) = f{x(t), u(t)) 

(1) 
y(t) = g(x(t), u(t)) 

where 

x(t) = n X 1 state vector; 

u(t) = r X 1 input vector; and 

y{t) = m X 1 output vector. 

The controller also has the basic form of Eq. (1) as it consists of 

integrating and function elements. But in addition a derivative element is 

sometimes used in which case derivatives appear on the right hand side of 

Eq. (1). In practice the output signal from an integrator will be 

differentiated at most once so that the controller equation is 

5t x(t) = f(x(t), ^ x ( t ) , u(t)) 

(2) 

y(t) = g(x(t). u(t)). 

The general equation form results when the equations for the three 

components are coupled and the signals that link to the plant are explicitly 

labeled 

^ x ( t ) = f(x(t).^x(t),u^^^(t),u,^,(t)) 

(3) 

yctl(^) = 9(^(^)> ymea(t)' ^drnd^^^' 

where 



UmoaCt) = 1 X n , measured input vector; 
-mea* mea '^ 

^dmd^^^ = 1 X n . . demand input vector; and 

^ctl^^^ " ^ " "ctl control system output vector. 

To guide the choice of initial conditions and their calculation for the 

above equations, we must consider the intended applications. Since the code 

is ultimately to be used for analysis of plant wide transients, the initial 

conditions must be compatible with the way in which these transients 

begin. Generally, the user prescribes the plant steady state and therefore 

it should be reasonable to initialize the control system so that at time 

zero it preserves this steady state. In this case boundary conditions for 

the control system are taken from the plant, and control system time deri

vatives are set to zero. Writing the control equations explicitly in terms 

of the measured signals, control signals and demand signals, Eq. (3) becomes 

9 - f(x(0). 0. y;ea(°)- i^drndW) 
(4) 

9 = 9(i i(o).yW°)-ydmd(°))-^ai(°)-

where 

-ctl^*^^ ^ ^ " "ctl ^^'^'^°'" o*" plant values associated with y-fitO); and 

"itioaC') = 1 » n vector of plant values associated with u„„,(0). 

The asterisk denotes steady state conditions in the plant. The initial 

conditions then that place the control system in steady state equilibrium 

with the plant are the values of u^^d^") *"'' -C^) ^̂ *̂- satisfy Eq. (4). 

B. Block Diagram 

One might well ask what benefits can be obtained from a knowledge of 

this general equation. The principal benefit is a flexible modeling 



approach that permits the user to describe the plant control equations in a 

block diagram manner. The key to achieving this capability is the fact that 

the properties of the general equation form are well known and can be 

brought to bear on the development of a reliable numerical scheme. 

The process by which the user describes his block diagram is analogous 

to the process of programning an analog computer. Basically, four types of 

information must be supplied; a particular signal type is available for each 

kind. First, the user's forcing functions that drive the collection of 

blocks must be defined. A demand signal as a function of time is provided 

as a table. Second, the plant measured quantities that also drive the 

collection of blocks must be defined. A measured signal is available for 

this purpose. Access is permitted to a number of plant variables including 

temperature, flow, pressure and inventory in a number of reactor 

components. Third, the mathematical blocks must be defined and the 

interconnections among them specified. Each block can accept up to two 

signals at its input for processing to yield the result, termed a block 

signal, for further processing. Finally, those block signals that are used 

to drive the plant must be defined. For that purpose, a control signal 

whose value is taken from the output of a block can be defined by the user 

to drive, among other things, control rods, feedwater mass flowrate and pump 

motor torque. ' 

The block diagram, and hence functions f and 3, are represented through 

several vectors whose entries define the types of blocks and the 

interconnections among blocks. The vectors are one-dimensional and the 

index to the elements can be thought of as analogous to a space index. To 

begin with, a unique signal number is assigned to each block signal. If 

there are n|ji|̂  block signals occurring in the user input, and if the ith 

block signal is assigned signal number m and corresponds to a block of type 

k, then the following entries are created: 

'-blk,i = "" and K|3i|̂ ^̂  = k; i = 1 n^ik-



Further, if the inputs to this block are signals q and r then the entries 

•^^blk.m = 1 a"d J2blk,m = ''• 

are also created. If the block is a non-dynamic one, then the block 

operator is 

F.(S^, S^) = value of signal m at time j, 

or if the block is a dynamic one, then the block operator is 

D.(S^, S^) = value of derivative of signal m at time j. 

The variable S^ denotes the value of signal q at time j. A complete list of 

blocks is given in Fig. A.l. An auxiliary vector also stores information on 

dynamic blocks only. For the ith occurring dynamic block having signal 

number m the entry 

'-dyn,i = "•: ^ = 1 "dyn' 

is created. 

A unique signal number must also be assigned to each control signal. 

Recall that a control signal is used to drive a plant variable and that the 

signal originates at the output of a block. If there are n.^j control 

signals occurring in the user input, and if the ith control signal is 

assigned signal number m, then the following entries are created: 

L c t M = "•: ' = 1 "ctl-

Further, if this control signal is taken from the output of block q, then 

the entry 

"^ctl,m " "I' 

is also created. 



The vectors Lfĵ ĵ , Kĵ iî , Olbik ^"^ "̂ b̂lk ^^^^ define the block 
diagram. Both the steady state and transient solution methods access these 

vectors to march through the block diagram in a manner analogous to the 

step-wise progression up an axial mesh that is used in typical assembly 

thermal hydraulics analysis codes. In the control system problem, however, 

a logical relationship among blocks is substituted for the spatial 

relationship that exists among fluid cells in thermal hydraulics problems. 

III. SOLUTION TECHNIQUES 

So far we have focused on the benefits derived from a generalized 

modeling capability, but have not touched on the methods used to implement 

the model. We will now describe the numerical techniques, first discussing 

the potential problems that can occur when solving a set of equations of the 

form Eq. (3) and then describing the numerical methods used to handle them. 

Because the modeling capability is generalized, the solution techniques 

should be transparent for a wide range of situations that can arise. In the 

case of the steady state solution finder, it is clear that the equations and 

variables to be solved for are given by Eq. (4). In certain instances these 

equations may not be square yet a solution exists, while at other times the 

Jacobian of the right-hand side may be singular. In the case of the 

transient solution it is important that the solution technique be able to 

maintain a user-specified level of solution accuracy under a wide range of 

system response times. Solution techniques capable of handling these 

situations might be termed robust. We describe such techniques here. 

A. Steady-State Solution 

We must solve the steady state equations given by Eq. (4) for the 

initial conditions U-j-,j(0) and x(0) given the boundary conditions 

ymea^°^ *"'' ^ctl^*^^" ^̂ ^ numerical solution of these equations is 

relatively straightforward; essentially, any non-linear equation solver can 

be used to solve them. The basic approach is to provide initial estimates 

for the unknowns ^d^dW and x(0) and then refine these estimates through 

successive iterations so that the right-hand side of Eq. (4) tends to zero. 



The solution me.hod thus requires us to calculate the right-hand side 

of Eq. (4) given estimates for Uj^j(O) and x(0). To do so we march through 

the block diagram to obtain values for f an? 3. Suppose sP denotes the 

value of signal m at the start of the pth Iteration. Assume that if the 

signal sP is either a measured signal or a control signal, that it has been 

set with the respective boundary condition in the associated element of 

u*gj(0) or y*,,i(0). Assume that if another signal sP is associated with one 

of the elements of U(ĵ (j(0) or x(0), that an estimate for the start of the 

pth iteration has been assigned. Then the value of the right-hand side of 

Eq. (4) for the pth iteration is calculated as follows: for i = 1..... 

"blk " t 

"• = "-blk,!'' ^ = '^blk,m' 1 " Jlblk,m' •" " ^^blk.m? 

and then based on the value of k calculate one of the following: 

sP = 0. k = 4. 

sS = ^(SP, sP), k = 1,2,3,8 21 

For the pth iteration, the elements of f are 

dyn,i 

and the elements of 3 are 

'^ '^ '• '-ct l , i 

The right-hand side of Eq. (4) is calculated using these values of f and 3. 

The solution strategy is to minimize the length of the right-hand side 

of Eq. (4) by i terat ing on the values of U(j|^j(0) and x(0). The search 

procedure is described in Reference 3. Basically, we supply the value of 

the right-hand side at the start of each i terat ion and from this the search 

strategy decides on the appropriate adjustments to U(j^j(0) and x(0) for the 

next i te ra t ion . A solution has been found when the right-hand side of Eq. 

(4) becomes zero. 



The solution search strategy of Reference 3 was selected for its 

ability to handle both singular Jacobians and over-determined systems. 

First, non-linear equation solvers that rely on calculation of the inverse 

of the Jacobian of the right-hand side of Eq. (4) with respect to the 

unknowns will fail in certain cases. If, for example, one of the unknowns 

feeds into a block that has a deadband region, iterating on the unknown may 

place the input to this block in the deadband zone. Then the derivative of 

the right-hand side of Eq. (4) will be zero with respect to the unknown, in 

which case the inverse Jacobian does not exist. Second, the solution method 

must be able to handle both square and over-determined systems. Typically, 

the equations are square, that is, the number of equations equals the number 

of unknowns. However in some instances the equations may be over-

determined, that is, the number of equations exceeds the unknowns. 

One would normally expect a solution to Eq. (4) to exist, but not 

necessarily a unique solution. With the plant at steady-state, as it is in 

our case, there should be a set of demand signal values that yield control 

signal values that are consistent with the plant steady-state. However, if 

the control system contains deadband, then the solution may not be unique. 

The search strategy of Reference 3 will alert the user when the solution has 

the property that it can be perturbed in a particular direction to yield 

another solution, as would likely be the case when deadband is present. 

8. Transient Solution 

The numerical techniques used to solve Eq. (3) are based on explicit 

differencing and a numerical marching procedure. The numerical techniques 

have performed well for those problems examined to date. A time step 

control mechanism automatically adjusts time step size to maintain a 

specified level of accuracy. This usually results in a step size smaller 

than the time constant of the fastest component which is often a sensor. 

When the equations are stiff, other solution techniques may offer a 

computationally more efficient solution. However, experience has shown that 

the order of the control equations is usually small and that the computa

tional demands of the current scheme are reasonable. 
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The reader is cautioned that the notation used to represent the 

differenced control equations may appear unconventional, compared to the 

equations of reactor physics and thermal hydraulics. These latter equations 

when differenced in one-dimensional space appear with a single index 

denoting location in space. However, geometry or space is not pertinent 

here. Instead, the continuum of space is replaced by a logical relationship 

among control equation blocks. The relationship among blocks in a specific 

problem is given by the vectors Liĵ î , K|ĵ |,, Jl^ik *"** Ĵ jjiî  as described in 

subsection 11.8. 

The block diagram is advanced across a time step in two phases. In the 

first step, the block signals are updated to the start of the time step. 

This involves setting the measured and demand signals and then marching 

through the block diagram while holding dynamic block signals constant. For 

i = 1 "blk set 

"" " '-blk,l! '̂  " '^blk.m^ 'I " '^^lk,m' "• " J^blk,m' 

and then based on the value of k calculate one of the following: 

si 
m 

m 

q q 
tJ - tJ-1 • 

^(i> 4)' 

k = 4, 

k = 1,2,3.8, . , 21 , 

si = sf, k - 5,6,7. 
m m 

Then in the second step, the block signals are advanced across the time 

step. For 1 = I r\^^•^^^ s e t 

"• = ' -b i k , i : k = '^blk,m! 1 = Jlblk,m! '' = J2|jlk,m5 

and then based on the value of k calculate one of the fol lowing: 
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oj cJ-1 
sJ+1 = — 9 L k = 4-

m̂""̂  ^ ^ ^ S f ^ - ^r*^)' •« = 1.2.3.8....,21; 

SJ + 5J+I 5J + rj+1 

^r ' = M^^^' ^^v-)(t^^^ -1̂ ") ^ s^ k = 5.6.7. 

On completion the elements of X'̂"''̂  are stored in 

^C.i' ' • ' *"• 

An accurate and stable solution to both the control equations and the 
plant equations is obtained by controlling the basic time step size known as 
a subinterval. The initial size of a new subinterval is obtained by SASSYS 
by extrapolating rates of change in the plant from the previous 
subinterval. The control equation^ are advanced first over this new 
subinterval according to the algorithm just described. Two time step 
control mechanisms can come into effect during integration of the control 
equations. 

The first time step mechanism attempts to limit the error in the 
control equation solution that results from numerically integrating over the 
subinterval. An initial estimate for this error is made after the 
integration algorithm has obtained a solution at the end of the current 
subinterval. The estimate is made for each element of the vector x (i.e. 
dynamic blocks) by first estimating a value at the end of the current 
subinterval by linearly extrapolating the change across the previous 
subinterval: 
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where 

"• = •-.„- .; i = 1 n dyn.i' ' " ^•••••"tiyn* 

If SJ*^ is the value calculated by the integration algorithm then the error 

estimate is 

eJ = -HI "lie' (6) 
"> |SJ| + F5SIG(m) 

where F5SlG(m) is the zero crossing parameter supplied by the user as 

discussed in subsection IV.F. The solution has converged if the quantity e^ 

is less than the user-supplied value for the error criterion EPSCS. If the 

solution has not converged, then for purposes of control system integration 

only, the subinterval is bisected into two substeps and the control 

equations are again advanced over the subinterval. The error is again 

computed using Eq. (6) but using the value that resulted from the previous 

integration in place of S^ g. If the subinterval is still not converged, it 

is again bisected so now there are four substeps in the subinterval. This 

process is repeated until the error between successive iterations as defined 

by Eq. (6) is less than the input value for EPSCS. 

The second time step mechanism limits the relative change in the 

control solution over a single subinterval. Large and unrestricted changes 

can lead to instability between the control system solution and the plant 

solution. After the subinterval has converged as described above, the 

relative change in control signals is computed via 

KJ'+I - Ŝ l 

CJ = }1E 'jul (7) 
•" IS^I + F5SIG(m) 

where 

"> = '-ctl.i; 1 = 1 n 'ctl' 
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where F5SlG(m) is the zero crossing parameter whose value is supplied by the 

user. For the m that gives the largest value of C'̂ , if this value of C^ is 

greater than the user-supplied relative change criterion EPSCPL, then the 

subinterval time step is cut back so that the relative change EPSCPL is just 

met. The subinterval cutback size is obtained by linear interpolation so 

that the new size is the value of At that satisfies 

At tJ^l - tJ 
EPSCPL -j • (8) 

If the subinterval time step is cut back, then the control system 

integration starts over again using the new subinterval size. 

A third time step mechanism is used to limit the relative change in the 

plant solution across a subinterval. This mechanism is analogous to the 

second time step mechanism and is described in Reference 1. 

IV. A GUIDE TO USER APPLICATION 

This section provides some guidelines that should help tie together the 

general equations and solution techniques just described and the card input 

description given in Appendix A. In this section signal definition rules 

that must be observed are stated, modeling capability features are 

highlighted, and rules of thumb for choosing the values of solution control 

parameters are given. 

A. Signal Definition Rules 

Signals are defined through the input deck and the definitions must 

conform to certain rules. Any of the four signal kinds can appear anywhere 

in the signal card region of the input deck, subject to the following rules. 
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Rule 1 - A block signal that is output from other than an integrator, lag 

compensator or lead-lag compensator must have been previously 

defined in the input stream before it can be used as an input to 

another block. This rule 1s intended to avoid circular references 

and to maintain proper sequencing of signals during numerical 

integration. 

Rule 2 - A demand signal or measured signal must pass through at least one 

block before it can be used as a control signal. 

Rule 3 - Each signal must be assigned a unique signal number between 1 and 

998. 

The card format for defining a signal is given in Appendix A. 

B. Units 

Generally all measured signals are in MKS units while all control 

signals should be calculated in these same units. The exceptions are those 

signals that are normalized to a steady state value; these are appropriately 

noted 1n Table A.3. 

The convention for demand signals is that demand tables are always 

entered by the user, normalized to a time zero value of unity. The actual 

value for a demand signal is calculated in the code by multiplying the 

current time entry in the demand table by the initial condition value. The 

next subsection describes how the initial condition value is obtained. 

The units of a block output signal are determined solely by the units 

of the input signals and any conversion factors that are entered by the user 

as constants on the block definition card. 

C. I n i t i a l Conditions 

In order to begin a transient calculation, initial condition values are 

required for demand signals and for the integrator, lag compensator and 
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lead-lag compensator blocks. There are basically three options available 

for setting these values. In the first option, all values are supplied by 

the user through input cards; in this case the steady state solution finder 

is bypassed. If the user is seeking the steady state solution, then a null 

transient may have to be run. In the second option, the steady state 

solution finder is used to solve for the steady state values. In the final 

option, a mixed set of initial conditions are used with some values read 

directly from the signal cards while the remaining values are solved for 

such that Eq. (4) is satisfied. The card input data required for each of 

these options is described below. 

If the initial condition values are to be read from the input cards 

then the steady state solution finder should be bypassed by setting the 

JISIG field on the 999 card to '0'. Then the value for a demand signal and 

for the block signal of each integrator, lag compensator and lead-lag 

compensator is taken from the F4SIG field on the associated signal 

definition card. 

If the initial condition values are to be calculated by the steady 

state solution finder, then the JISIG field on the 999 card is set to '1'. 

An initial guess for each demand signal and integrator initial condition 

variable must be supplied on the F4SIG field of*the signal definition 

card. In addition the F3SIG field must be set to '0.0'. As a rule of 

thumb, the initial guess should be within 15% of the actual steady state 

value to ensure convergence. The lag compensator and lead-lag compensator 

are special cases and do not require initial condition information from the 

user. 

Finally, if a mixed set of initial conditions is to be used, the card 

data is identical to the case directly above, except for those demand and 

integrator signals whose initial conditions are to be read from cards. For 

these signals the F3SIG field is set to '1.0', and the F4SIG field is set to 

the initial condition value desired. 
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D. Solution Accuracy 

The control system modeling capability attempts to limit the solution 

error that is introduced during the numerical Integration of the control 

equations over a subinterval. Recall the error is controlled by repeatedly 

bisecting the subinterval time step into substeps until integrating across 

the subinterval gives a relative error between successive iterations that is 

less than the user-supplied value for EPSCS. (The method was described in 

Section III.B.I The value of EPSCS is input on a table card and occupies 

location 8001. A value of 0.01 is suggested for most applications. 

E. Solution Stability 

The modeling capability also attempts to maintain a stable solution to 

the coupled control system and plant equations. The basic Idea is that 

stability is enhanced if the relative change in a control signal across a 

subinterval is maintained less than the user supplied value for EPSCPL. 

[The method was described in Section III.B.] The value of EPSCPL is input 

on a table card and occupies location 8002. A value of 0.1 is suggested for 

most applications. 

F. Zero Crossing Parameter 

The zero crossing parameter in Eq. (6) is Intended to prevent 

unnecessarily small time step size when a signal passes close to zero. The 

situation we seek to avoid occurs when the zero crossing parameter F5SIG is 

zero. Then the denominator in Eq. (6) is very small so that the relative 

error is very large. Time step size is severely reduced even though the 

absolute error in the signal may well be acceptably small. The solution is 

to control absolute error at the zero crossing and we do it through the 

relative error control mechanisms associated with Eq. (6) by proper choice 

of a value for F5SIG. 

The appropriate value of F5SIG is problem dependent and Is selected by 

the user for input to the code. The goal 1s to select a value that gives a 

desired level of absolute error near the zero crossing yet does not 
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significantly impact the calculation of relative error away from the zero 
crossing. To do so we note that the code controls integration error using 
Eq. (6) so that on convergence the solution satisfies 

1^^^ - H^ = ^PS" (|sJ|+F5SIG(m)) (9) 

where the value of m is rest r ic ted to those signals that are output by 

dynamic blocks. Near the zero crossing SjJ w i l l be ins ign i f icant so that 

Eq. (9) is equivalently 

EPSCS F5SIG(m) = ' " r p . p ? ' ^ . (10) 

Note that the numerator is the absolute error in the solution at 
convergence. We can arrange for the numerator to take on a specific value 
by appropriately choosing the value of F5SIG(m) once the value of EPSCS has 
been selected. For example, suppose we want the absolute error on 

-4 convergence near the zero crossing to be S" 10 where S° is the maximum 
magnitude signal m is to take on over all time. If. for the sake of 
illustration, a value of 10"^ was input for EPSCS. then we can achieve our 
absolute error objective by calculating the value of F5SIG(m) from Eq. (10). 

F5SIG(m) = -^ 5- = SO lO""̂ . 
jO-2 m 

Away from the zero crossing, the impact of F5SIG(m) is insignificant. 

Similarly, the value of F5SIG(m) associated with a control signal 

should be selected as follows. The time step size is adjusted down if 

necessary so that the largest relative change in a control signal is limited 

by Eq. (7) to 

\^m^-^i\ = '̂"̂ P̂'- (1^1 * F5SIG(m)) (11) 

where the value of m is restricted to those signals that are control 
signals. Near the zero crossing S^ will be insignificant so that Eq. (11) 
is equivalently 
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isi*^ - sii 
F5SIG(m) = "'EPSCPL • ^^^^ 

Note that the numerator is the absolute change In the solution across the 

time step. We can arrange for the numerator to take on a specific value by 

appropriately choosing the value of F5SlG(m) once the value of EPSCPL has 

been selected. For example, suppose we want the absolute change in the 

control signal near the zero crossing to be as large as SjjjlO"̂  before time 

step size is reduced. If, for the sake of Illustration, a value of 10"^ was 

input for EPSCPL, then the absolute change objective will be met if F5SIG(m) 

is calculated from Eq. (12), 

F5SIG(m) = -!5 ^ = S" 10""^. 
10-1 m 

Away from the zero crossing, the impact of F5SIG(m) on the control of 

fractional change is insignificant. 

V. SUMMARY 

This report serves as a user's guide to a control system modeling 

capability that has been developed for the analysis of control schemes for 

advanced liquid metal reactors. The plant control equations are shown for 

all practical applications to belong to a particular class of mathematical 

equations. The numerical techniques used to solve these equations are 

described. The user models the control system in a block diagram manner, 

assembling particular equations through the input by connecting together the 

basic mathematical blocks that are available. The modeling capability has 

been implemented in the SASSYS-1 systems analysis code. A description of 

the card input is given along with a sample input deck. 
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APPENDIX A 

CONTROL SYSTEM INPUT DESCRIPTION 

This appendix contains a description of the SASSYS-1 input block 

assigned to the control system model. 

A.l Input Block Structure 

The input block structure is identical to the standard SASSYS-1 input 

block structure in all but one respect. A new card format known as a signal 

card has been introduced. These cards immediately follow the block 

identifier card and precede the standard data cards. The ordering of the 

different card types is depicted in the diagram below. 

block identifier card 

signal card # 1 

signal card # 2 

signal card # n 

end of signal card 

data card # 1 

data card # 2 

data card # m 

block delimiter card 
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A.2 Signal Cards 

A signal card contains data fields for the Fortran variables 

ISIG JTYPE JISIG J2SIG FISIG F2SIG F3SIG F4SIG F5SIG 

with the format descriptors 415, 5F10.3. These variables are defined in 

Table A.I. 

A signal card is used to define a signal in the user's block diagram. 

As described in the main body of this report there are four signal types: 

measured, demand, block and control. Each signal must be assigned a unique 

signal Identification number using the ISIG field. The value of ISIG must 

lie between 1 and 998. 

A.2.1 Measured Signal 

A measured signal makes available to the block diagram the 

present value of a referenced SASSYS-1 variable. The correspondence between 

the referenced SASSYS-1 variable and the signal card data field values is 

given in Table A.3. Note that all measured signals have a JTYPE value 

between -50 and -89. 

A.2.2 Demand Signal 

A demand signal makes available to the block diagram the product 

of the current value of a time dependent function defined by the user 

through a demand table and an initial condition value. A demand table is a 

set of ordered pair values supplied by the user. The independent variable is 

time and the dependent variable is to be normalized to a time zero value of 

unity. The values are entered through a table card defined in Table A.2. 

The SASSYS input storage locations for demand table data are given in Table 

A.4. The code generates the demand signal value by linearly interpolating 

among the table entries using the current time. The initial value is 

obtained as described in Section IV.C. The correspondence between the 

demand table and the signal card data fields is given in Table A.3. Note 

that a demand signal has a JTYPE value of -90. 
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A.2.3 Block Signal 

A block signal makes available to the block diagram the value at 

the output of a block. The correspondence between the block characteristics 

and the signal card data fields is given in Table A.3. Note that all block 

signals have a JTYPE value between 1 and 21. A measured, demand or block 

signal can be used as an input to a block by specifying on the block's 

signal definition card the signal identification number assigned to the 

input signal. The signals input to each block type are combined according 

to the mathematical expression given in Fig. A.l. 

A.2.4 Control Signals 

A control signal is used to set the value of a SASSYS-1 variable 

equal to the value of a block signal. The correspondence between the block 

signal and the SASSYS variable and the signal card data fields is given in 

Table A.3. Note that all control signals have a JTYPE value between -1 and 

-7. 

A.2.5 End of Signals 

A sequence of signal definition cards is delimited by a signal 

card with the ISIG field entry equal to '999'. 

This card also contains flags for control of the steady state 

solution finder. First, the JISIG field is used to determine whether the 

steady state solution finder is to be used. An entry of '1' indicates that 

the steady state solution finder is to be used, while any other entry in 

this field causes the solution finder to be bypassed. (A discussion of the 

initial condition option is given in subsection IV.C.) Secondly, the J2SIG 

field allows the user to control the amount of steady state output 

generated. An entry of '1' produces an extended output for trouble shooting 

purposes, while any other entry produces a standard output. 

A flag also exists for generating an extended printout during the 

transient for debug purposes. The debug is generated by setting the JTYPE 

field to '1'. The printout begins at the time specified on the FISIG field. 
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A.3 Data Cards 

A data card contains the data fields for the Fortran variables 

LOC N VARl VAR2 VAR2 VAR3 VAR4 VAR5 

with the format descriptors 216, 5E12.5. The variables are defined in 

Table A.2. 

A data card appearing in the control system input block has a format 

identical to the standard SASSYS-1 data card used In all other SASSYS-1 input 

blocks and is processed in the same way. The format information given above 

is the same as in the SASSYS-1 manual and is given here for completeness. 

Data cards are used to construct demand tables, function generator tables 

and to supply solution control parameters. These quantities and their storage 

locations are defined in Table A.4. 



Block 

1. summer 

2. mult ipl ier 

3. divider 

Type Representation Mothema'ical Expression 

y = 9(91^1 + 92^2) 

4. di f ferent iator 

function 

function 

function 

function 

^1 

U j 

1̂ 1 

U j 

' 

U2 

U 

91 

92 

S 

X 

/ 

d 
dt 

9 

9 

9 

9 

y 

y 

y 

y 

y = guiU2 

y = 9.. 

y = 9 ^ u 

Fig . A . l . Mathematical Blocks 



Block Type 

5 . In tegra tor dynamic 

Mathe.mcrical Expression 

y = yo + 9 j£* "J dt 

6 . lag 
compensa to r 

dynamic 

y + T ^ y = g u 

y(o) = yo 

7. l e a d - l a g 
c o m p e n s a t o r dynamic 

y + T , | f y = g ( u - H T 2 ^ u ) 

y(0) = yo 

Fig. A.l. Mathematical Blocks (Contd.) 



Block Type Representotion Matherriai!cal Expression 

function 
generator table 

9f(u) 
y = gf(u) 

9. maximum 
value function y = max(u „ Uj) 

10. minimum 
value function y = min(u,, U;) 

11. t ime delay function y = yo 
y = u(t - r ) 

0 < t < T 
t > T 

F i g . A . l . Mathematical Blocks (Contd.) 



Block Type Representation Mathematical Expression 

12. natural 
logarithm function y = In u 

14. velocity 
llmiter 

15. AND 

function 

function 

logic 

" i 

u 

" i 

"2 

U } 

VELOCITY 
LIM 

AND 

y 

y 

M 

y = u,"^ 

y = ydovn gu < ydown 
y = yup gu > yup 
y = gu otherwise 

ydown = y(» - h) - hVjown 

Vup = y(+ - h) + hVup 

y = l 

y = 0 

u, > 0 , U2 > 0 

otherwise 

Fig. A . l . Mathematical Blocks (Contd.) 



Block IZ£e Representation Mathemo'ical Expression 

16. OR logic 
y = 0 u, < 0. U2 ^ 0 
y = 1 otherwise 

17. NOT logic 
y = 1 
y = 0 

u < 0 
u > 0 

18. comparator logic 
y = 0 
y = 1 

U, < U j 

U, > U j 

F i g . A . l . Mathematical Blocks (Contd.) 



Block 

19. sample and 
hold 

Type 

function 

Representation Mathematical Expression 

y(t) = UjCt) u,(t) ^ 0 

y « = U20o) u i ( t ) ^ o . t o < t 
u,(f) ^ 0. 

t - , < f < t o 

20. J-K flip flop logic 

yn + I _ Qr 
yfl-M _ 0 

y" + l = : 1 
yfl + l _ Qn 

U, ^ 0 . U2 ^ 0 

0. U2 ^ 0 U, » l 

U, ^ 0 , U 2 > 0 
u, > 0 . Uj > -0 

2 1 . constant function y = 9 

Fig. A.l. Mathematical Blocks (Contd.) 
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13 
25 
37 
49 
61 

TABLE A.l. Signal Card Format 

Column 

1 
6 
11 
16 
21 
31 
41 
51 
61 

Format Code 

15 
15 
15 
15 
F10.3 
F10.3 
F10.3 
F10.3 
F10.3 

Definition 

Signal number 
Signal type 
Signal descriptor 1 
Signal descriptor 2 
Constant I 
Constant 2 
Constant 3 
Constant 4 
Constant 5 

TABLE A.2. Table Card Format 

Column Format Code Definition 

16 

16 

E12.5 
E12.5 
E12.5 
E12.5 
E12.5 

Storage location 
of VARl 

Number of consecutive 
locations 

Constant 1 
Constant 2 
Constant 3 
Constant 4 
Constant 5 



!s1gnji1 

Type 

TABLE A . 3 . Signal Data 

r.rri Fntrip-;' 

JISIG FISIG F2SIG F3SIG F4SIG F5SIG 

Measured 

Coopresslble volume 
pressure, PRESL3 

Liquid segment flowrate, 
FL0SL3 

Liquid cover gas interface 
elevation, 2INTR3 

Measured 
Measured 
Measured 
Measured 
Measured 
Measured 
Measured 
Measured 
Measured 
Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Liquid nass, XL0MS3 
Cover gas volume, V0LGC3 
Time 
Pump head, HEADP3 
Liquid temperature, TLqCV3 
Liquid density, DNSCV3 
Wan temperature, TULCV3 
Cover gas pressure. PRESG3 
Cover gas mass, GASMS3 
Cover gas temperature, 
TGASC3 

Not used 

Liquid segment temperature 
TSLIN3 

Pump speed, PSPED3 

Core channel coolant 
flowrate, CHFL03 

Liquid node temperature, 
TLN0D3 

Uall node temperature, 
TWN003 

-53 
-54 
-55 
-56 
-57 
-58 
-59 
-60 
-61 
-62 

-63 

-64 

-65 

-66 

-67 

-68 

Volume number, ICV 

Liquid segment 
number, ISGL 

Volume number, ICV 

Volume number, ICV 
Volume number, ICV 

Pump number, IPMP 
Volume number, ICV 
Volume number, ICV 
Volume number, ICV 
Volume number, ICV 
Volume number, ICV 
Volume number, ICV 

Segment number, ISGL In1et«l 
Outlet-2 

Pump number, IPMP 

Channel number, ICH in1et>l 
Out1et-2 

Node number, INOD 

Node number, INOD 



TABLE A.3. Signal Data (Contd.) 

-'Jignal 

Type Variable JISIG 

Card Fntripi;^ 

J2SIG FISIG F2SIG F3SIG F4SIG F5SIG 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Measured 

Liquid element temperature, 
TELEM 

Not used 

Core channel outlet 
temperature, CHFCOF 

Normalized reactor power, 
DEXP (POWVA (3,1)) 

Normalized fission power, 
POWFSO • AMPO 

Normalized decay heat 
NPOMOK 

I P0MWT(1) X POMDKH(i) 

Not used 

Steam generator, feedwater 
mass flowrate In 

Steam generator, feedwater 
enthalpy In 

Steam generator, steam mass 
flowrate 

Steam generator, steam 
temperature out 

Steam generator, steam 
pressure 

Steam generator, water level 

-69 

-70 

-71 

-72 

-73 

-74 

•75 

-83 

-84 

-85 

-86 

-87 

-88 

Element 
lEL 

Channel 

,-82 

• 

number. Inlet=l 
Dutlet=2 

number, ICH Inlet^l 
0utlet=:2 

SG number 

SG number 

SG number 

SG number 

SG number 

SG number 



TABLE A.3. Signal Data (Contd.) 

Type 

Measured 

Demand 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

<:i9nAl 

Variable 

Steam generator, steam 
enthalpy out 

Demand table 

Sumner 

Multiplier 

Divider 

Differentiator 

Integrator 

Lag compensator 

Lead-lag compensator 

Function generator 

Maximum 

JTYPE 

-89 

-90 

1 

2 

3 

4 

5 

6 

7 

8 

9 

JISIG 

Demand table number 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Card Fnt 

J2SIG 

SG number 

Number of 
entries In 
table 

Input signal 2, 
ISIG 

Input signal 2, 
ISIG 

Input signal 2, 
ISIG 

Function gene*--
ator table number 

Input signal 2, 
ISIG 

riP^O 

FISIG 

91 

9 

9 

9 

9 

9 

9 

9 

F2SIG F3SIG 

Initial 
condition 

flag 

92 9 

Initial 
condition 

flag 

T 

n '2 

F4SIG 

Jo 

>o 

yo 

>S 

yg 

F5SIG 

'̂  

4 

4 

3> 
I 



TABLE A.3. Signal Data (Contd.) 

Type 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Block 

Control 

Variable 

Minimum 

Time delay 

Natural logarithm 

Exponentiation 

Velocity llmiter 

AND 

OR 

NOT 

Comparator 

Sample and hold 

JK flip-flop 

Constant 

Reactivity, $ 

Card Fntrip-:' 

JTYPE JISIG J2SIG FISIG F2SIG F3SIG F4SIG F5SIG 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

-1 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1, 
ISIG 

Input signal 1. 
ISIG 

Signal number used 

Input signal 2, 
ISIG 

Input signal 2, 
ISIG 

-

Input signal 2, 
ISIG 

Input signal 2 
ISIG 

Input signal 2, 
ISIG 

Input signal 2, 
ISIG 

Input signal 2, 
ISIG 

T 

9 

9 

Mown "up 

9 



Type 

-Sipnal 

Variable JTYPE 

TABLE A.3. 

JISIG 

Signal Data (Contd.) 

r«rfi Fntrip^' 

J2SIG FISIG F2SIG F3SIG F4SIG FSSIG 

Control Pump motor 
torque, normalized 

Control Steam generator, 
feedwater mass flowrate 

Control Steam generator, 
feedwater enthalpy 

Control Steam generator, 
steam mass flowrate 

Control Sodium valve loss 
coefficient 

Control Steam generator, 
steam pressure 

-2 

-3 

• 1 

•5 

6 

•7 

Signal number 
used 

Signal number 
used 

Signal number 
used 

Signal number 
used 

Signal number 
used 

Signal number 
used 

Pump number 

Steam generator 
number 

Steam generator 
number 

Steam generator 
number 

Valve number 

Steam generator 
number 

jFormat codes: 415, 5F10.3. 
^Not required If steady state solution finder is used, J1SIG{999)-1. 
Zero crossing parameter. 
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TABLE A.4. Table Data 

Location Fortran Symbol Definition/Comments 

CTLTAB (J,JISIG) 

2001 

4001 

6001 

8001 

8002 

CTLTIM 

CTLFNC 

CTLSIG 

EPSCS 

EPSCPL 

(J.JISIG) 

(J.JISIG) 

(J.JISIG) 

Table of normalized demand values. Dimension 
(20.100). Index JISIG designates table number 
and J is element number in table. 

Times for CTLTAB table. Dimension (20.100). 

Table of function generator dependent 
variables. Dimension (20,100). 

Table of independent variables for CTLFNC 
table. Dimension (20.100). 

Convergence parameter for dynamic blocks 
over a subinterval. 

Maximum relative change in a control signal 
over a subinterval. 
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APPENDIX B 

SAMPLE INPUT DECK 

The card Input listed below was used to control mass flowrate in a primary 

and Intermediate loop. Each controller measures the flowrate In its 

respective loop and compares this with a demand signal. The error signal Is 

Integrated and the output of the Integrator is used to odjust the motor torque 

driving a pump. 

INCONT 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
999 

1 
201 
21 

221 
41 

241 
61 

261 
801 
-1 

-51 
-90 
-90 
2 
1 
5 
-2 

-51 
-90 
-90 

2 
1 
5 

-2 
0 

5 

4 
4 
2 
2 
4 
4 
2 
2 
2 

8 
1 
2 
2 
1 
5 
6 
9 
3 
4 
9 
8 
12 
13 
0 

1 
0 
4 
2 
3 
4 
0 
1 
0 
4 
2 
10 
11 
0 
2 
0 

0 

1.0 
0. 

2291.7 
0. 
1.0 
0. 

2278. 
0. 

1000. 

0. 
0. 
0. 
1.0 
1.0 
1.0 
0. 
0. 
0. 
0. 
1. 
1. 
1. 
0. 
0. 

1.0 
10.0 

2291.7 
1000. 

1.0 
10.0 

2278. 
1000. 
1000. 

0. 
0. 
0. 
0. 

•1.0-4, 
0. 
0. 
0. 
0. 
0. 
0. 

•1.0-4, 
0. 
0. 
0. 

0. 
0. 
0. 
0. 

.365E-04 
0. 
0. 
0. 
0. 
0. 
0. 

.390E-04 
0. 
0. 
0. 

1.3 
20.0 

. 
1.3 

20.0 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1.3 

1000.0 

1.3 
1000. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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